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Abstract. There is rapidly growing momentum for web enabled agents that reason about and dy-
namically integrate the appropriate knowledge and services at run-time. The World Wide Web Con-
sortium and the DARPA Agent Markup Language (DAML) program have been actively involved in
furthering this trend. The dynamic integration of knowledge and services depends on the existence
of explicit declarative semantic models (ontologies). DAML is an emerging language for specifying
machine-readable ontologies on the web. DAML was designed to support tractable reasoning.

We have been developing tools for developing ontologies in the Unified Modeling Language (UML) and
generating DAML. This allows the many mature UML tools, models and expertise to be applied to
knowledge representation systems, not only for visualizing complex ontologies but also for managing the
ontology development process. Furthermore, UML has many features, such as profiles, global modularity
and extension mechanisms that have yet to be considered in DAML.

Our paper identifies the similarities and differences (with examples) between UML and DAML. To
reconcile these differences, we propose a modest extension to the UML infrastructure for one of the
most problematic differences. This is the DAML concept of property which is a first-class modeling
element in DAML, while UML associations are not. For example, a DAML property can have more
than one domain class. Our proposal is backward-compatible with existing UML models while enhancing
its viability for ontology modeling.

While we have focused on DAML in our research and development activities, the same issues apply to
many of the knowledge representation languages. This is especially the case for semantic network and
concept graph approaches to knowledge representations.

1 Introduction and Motivation

Representing knowledge is an important part of any knowledge-based system. In particular, all artificial
intelligence systems must support some kind of knowledge representation (KR). Because of this, many KR
languages have been developed. For an excellent introduction to knowledge representations and ontologies
see [20].

Expressing knowledge in machine-readable form requires that it be represented as data. Therefore it is
not surprising that KR languages and data languages have much in common, and both kinds of language
have borrowed ideas and concepts from each other. Inheritance in object-oriented programming and data
languages was derived to a large extent from the corresponding notion in KR languages.

KR languages can be given a rough classification into three categories:

— Logical languages. These languages express knowledge as logical statements. One of the best-known
examples of such a KR language is the Knowledge Interchange Format (KIF) [6].
— Frame-based languages. These languages are similar to object-oriented database languages.



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Extending UML to Support Ontology Engineering for the SemanticWeb | . -\ nUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Northeastern University,360 Huntington Avenue,Boston,M A,02115 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 15
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



— Graph-based languages. These include semantic networks and conceptual graphs. Knowledge is repre-
sented using nodes and links between the nodes. Sowa’s conceptual graph language is a good example of
this [20].

Unlike most data modeling languages, KR languages do not have a rigid separation between meta-levels.
While one normally does maintain such a separation to aid in understanding, the languages do not force
one to do so. In effect, all of the statements in the languages are in a single space of statements, including
relationships such as “instanceOf” that go between metalevels. In DAML, as in many other KR languages,
Class is an entity whose instances are classes. A class can have instances, and those instances may also be
classes. A chain of “instanceOf” links may be of any length. The Class entity, in particular, is an instance
of itself. As a result, KR languages incorporate not only modeling capabilities, but at the same time they
include meta-modeling, meta-meta-modeling, etc.

On the other hand, DAML and most other KR languages do not have profiles, packages or other modu-
larity mechanisms. DAML does make use of XML namespaces, but only for disambiguating names, not as a
package mechanism.

The analogy between hypertext and semantic networks is compelling. If one identifies semantic network
nodes with Web resources (specified by Universal Resource Identifiers or URIs) and semantic network links
with hypertext links, then the result forms a basis for expressing knowledge representations that could span
the entire World Wide Web. This is the essence of the Resource Description Framework (RDF) [14]. RDF
is a recommendation within the XML suite of standards, developed under the auspices of the World Wide
Web Consortium. RDF is developing quickly [5]. There is now an RDF Schema language, and there are
many tools and products that can process RDF and RDF Schema. The DARPA Agent Markup Language
(DAML) [16, 10] is an extension of RDF and RDF Schema that will be able to express a much richer variety
of constraints as well as support logical inference.

As in any data language, KR languages have the ability to express schemas that define the structure and
constraints of data (instances or objects) conforming to the schema. A schema in a KR language is called
an ontology [8,9,12]. An ontology is an explicit, formal semantic model. Data conforming to an ontology is
often referred to as an annotation, since it typically abstracts or annotates some natural language text (or
more generally a hypertext document). An ontology may include vocabulary terms, taxonomies, relations,
rules/assertions. An ontology should not include instances/annotations.

The increasing interest in ontologies is driven by the large volumes of information now available as
well as by the increasing complexity and diversity of this information. These trends have also increased
interest in automating many activities that were traditionally performed manually. Web-enabled agents
represent one technology for addressing this need [11]. These agents can reason about knowledge and can
dynamically integrate services at run-time. Formal ontologies are the basis for such agents. DAML is designed
to support agent communication and reasoning. We have been developing tools for developing and testing
DAML ontologies and knowledge representations.

RDF and DAML, which currently do not have any standard graphical form, could leverage the UML
graphical representation. In addition, RDF and DAML are relatively recent languages, so there is not as
many tools or as much experience as there is for UML. We are currently engaged in projects that have
realized benefits in productivity and clarity by utilizing UML class diagrams to develop and to display
complex DAML ontologies. Cranefield [4] has also been promoting ontology development using UML and
has been translating UML to RDF. Although their purposes are different, UML and DAML have many
characteristics in common. For example, both have a notion of a class which can have instances, and the
DAML notion of subClassOf is essentially the same as the UML notion of specialization/generalization.
Table 2 lists our best attempt to capture the similarities between the two languages.

Our paper discusses the similarities and differences between UML and DAML and they might be rec-
onciled. We are proposing a modest extension to the UML infrastructure to deal with the DAML concept
of property, which represents one of the most problematic differences. The DAML concept of property was
recently split into the notions of ObjectProperty and DatatypeProperty. A DAML ObjectProperty, at a first
glance, appears to be the same as a UML association, and a DAML DatatypeProperty appears to be the
same as a UML attribute. This is misleading, since the DAML notion of ObjectProperty is a first-class



modeling element, while UML associations are not. More precisely, in DAML, an ObjectProperty can exist
without specifying any classes that it might relate, i.e., it can exist independently of any classes. In UML, on
the other hand, an association is defined in terms of association ends, which must be related to classifiers.
Similar remarks apply to DAML DatatypeProperties versus UML attributes. This difference between UML
and most other KR languages has also been noted by Cranefield [4].

After analyzing the differences between the two modeling languages, we came to the conclusion that it
would not take too much to close the gap in the expressibility of UML while remaining backward-compatible
with existing UML models. Future work will highlight other proposals that would enhance its viability
for ontology modeling. Eventually, this work will culminate in a contribution to UML and MOF [7], in
the form of a Profile or Infrastructure and UML 2.0/MOF 2.0 recommendation, to lead to more general
acceptance of UML as a development environment for ontologies based on DAML and other KR languages.
The recommended changes to UML would have some effect on existing tools, but the changes are not any
more significant than other changes that being considered for UML 2.0 which would also have an impact on
existing tools.

2 DAML Background

The aim of the DAML program is to achieve “semantic interoperability between Web pages, databases,
programs, and sensors.” An integration contractor and sixteen technology development teams are working to
realize the DAML vision of “providing a set of tools for programmers to build broad concepts into their Web
pages ... and allowing the bottom-up design of meaning while allowing higher-level concepts to be shared.”
The problem DAML addresses is how to build a monolithic set of ontologies upon agreed-upon domain
models to share in a military grid. The solution is to develop usable interoperability technologies, similar
to those that enable the web to function. Towards this end, DAML will enable annotating information on
the web to make knowledge about the document machine-readable so that software agents can interpret
and reason with the meaning of web information. The only mechanism currently generally available for such
annotations on the Web is metadata in the head element of an HTML file. DAML enriches and formalizes
metadata annotations (see Figure 1).

DAML is only part of the Semantic Web vision [2,13] of the automation or enabling of things that are
currently difficult to do: locating content, collating and cross-relating content, drawing conclusions from
information found in two or more separate sources. DAML’s part is to serve as a markup language for
network agents to provide a mechanism for advertising and reusing specifications. The software tools for
creating these agents will be accomplished through the TASK (Taskable Agent Software Kit) Program to
reduce the per agent development cost. The third part of the Semantic Web vision addresses the middleware
layer as a continuation of the CoABS (Control of Agent Based Systems) investment to bring systems, sensors,
models, etc. into the prototype “agent grid” as an infrastructure for the run-time integration of heterogeneous
multi-agent and legacy systems.

DAML’s applications will be far-reaching, extending to both the military and commercial markets. Its
machine-to-machine language capabilities might be instrumental in realizing the application-specific function-
ality, independent of human control. DAML will also enhance the efficiency and selectivity of search engines
and other automated document processing tools. Such engines and tools will be able to scan multiple Web
pages and conceptually relate content that currently might seem unrelated because of variations or impreci-
sion in the language programmers used to identify that content. A number of DAML tools have been built
or are in progress, including an ontology library, parser/serializer, ontology editor/analyzer, DAML crawler
and viewer, etc. Trial government (e.g. Intelink at the Center for Army Lessons Learned) and commercial
(in e-commerce and information retrieval) applications have been planned and built.

The latest specification of the DAML ontology language (called DAML4-OIL) was released in March, 2001.
A description of the language specifications and documentation can been seen at [21]. For a good discussion
of the design rationale see [15]. Also a variant called DAML-L (logic) is in progress for rule representation
and reasoning. DAML+OIL is the basic representation language (analogous to the UML basic diagrams),
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Fig. 1. The Evolution of Metadata

while DAML-L will provide for logical assertion (analogous to the Object Constraint Language (OCL) of
UML).

3 Properties of Mappings

Because of the increasing number of modeling languages, it is becoming more important to introduce sys-
tematic techniques for constructing mappings (or transformations) between modeling languages and proving
that the mappings are correct [17-19]. In this section we discuss in general terms some of the issues that arise
when constructing mappings between modeling languages. When constructing mappings between modeling
languages, it is important to understand the goals and purpose of the mappings. A precise statement of goals
and purpose is essential for dealing with the many mapping issues, such as the following:

— Is the mapping required to preserve semantics? Ideally, the two languages should have well-defined notions
of semantics. In practice, they will not, so the best one could hope for is to have some reasonably precise
and convincing argument that the semantics are preserved.

— Is the mapping required to be defined on the entire modeling language? In many cases, it may suffice to
define the mapping on a subset of the modeling language. The purpose of the mapping can be used to
answer this question. If the language is simply a means (or “front-end”) for constructing models of the
second language, then it is reasonable to use only those constructs of the first language that are needed
for the second.

— Is the mapping simply a one-way mapping from one language to the other or should it be defined in both
directions? If the mapping is defined in both directions, then it is called a two-way mapping.

— If the mapping is a two-way mapping, should the two directions be inverses of each other? Having inverse
mappings is generally only possible when the languages are very similar to one another. This is not the
case for UML and DAML.

To make the discussion of mapping properties more precise, we need to introduce some concepts. We
presume that each modeling language has notion of semantic equivalence. The precise meaning of this notion
will depend on the language, but it usually takes a form such as the following: Two models M7 and Ms
are semantically equivalent if there is a one-to-one correspondence between the instances of M; and the
instances of My that preserves relationships between instances. Semantic equivalence of two models should
mean that the models differ from each other only in inessential ways, such as renaming, reordering or adding
redundancy.



We also presume that each model of a language can be serialized in a unique way. For example, one can
serialize a UML model using the XMI format, while DAML is defined in terms of RDF which has a standard
XML representation. For a model M in a language L, the size of M is the size of its serialization (in whatever
unit is appropriate for the serialization, such as the number of characters). The size of M is written #M.

Now suppose that Ly and Lo are two modeling languages. A mapping f from Ly to Lo is a function from
the models of L; to the models of Ly which preserves semantic equivalence. In other words, if M; and M
are two semantically equivalent models in L, then f(M;7) is semantically equivalent to f(Ms). In the case
of UML and DAML, the mapping is defined only on those UML models that are necessary for expressing
DAML ontologies, so it is only a partial mapping.

A two-way mapping from L1 to Lo is a pair of mappings, the first f; from L to Lo and the second fs
from Lo to L1, such that if f; is defined on M, then fs is defined on f;(M), and vice versa for fo and fi.
By assumption, two-way mappings preserve semantics in both directions

In general, two-way mappings are not inverses, even for the models on which they are defined. The best
one can hope for is that applying the two mappings successively will stabilize, but even this is hard to
achieve. To be more precise, we say that a two-way mapping is stable if for any model M on which f; is
defined, fi(fo(f1(M))) = fi(M), and similarly for models of Lo. While stability is much easier to achieve
than invertibility, it is still a strong property of mappings. Let (f1, f2) be a stable two-way mapping. For
any model M on which f; is defined, f2(f1(M)) forms a kind of “canonical form” for M in the sense that f;
and fo are inverses of each other on the canonical forms. Put another way, stable two-way mappings furnish
canonicalizations for the two languages as well as invertible mappings between canonical forms.

While stability is clearly desirable, it may not be necessary. A more realistic goal is for the two-way
mapping to settle down eventually. To be more precise, a two-way mapping (f1, f2) is bounded if for any
model M on which f; is defined, the sequence # f1 (M), # fo(f1(M)), # f1(f2(f1(M))), ... is bounded.

While it is desirable for mappings to be bounded, this can conflict with the desire to keep the mapping
simple. Consider, for example, a mapping from UML that maps each association to a DAML class and
each association end to a DAML property. This is certainly necessary for association classes and nonbinary
associations. Using the same mapping uniformly for all associations is certainly simpler than treating binary
associations that are not association classes in a different manner. However, doing so is unbounded. A binary
association will map to a class and two properties, which map back to a class and two associations, these
then map to three classes and four properties, and so on. This example illustrates how keeping the mapping
simple can result in unbounded mappings. We intend to propose mappings that are bounded, even though
this may make them somewhat more complex.

4 UML to DAML Mapping

In order to discuss the similarities between UML and DAML an initial incomplete mapping between the
languages has been created. Table 1 presents a high-level mapping of concepts from UML and DAML, and
serves as an overview of the overall strategy applied to the mapping.

Table 2 elaborates on the high-level concepts and expresses some of the specific extensions necessary for
the initial mapping between the languages. This proposed mapping is made with the assumption that UML
class diagrams are created specifically for the purpose of designing DAML ontologies. Legacy class diagrams
that were not originally intended for DAML applications would be usable for DAML purposes but would
need modification in order to make full use of DAML capabilities.

4.1 Representing DAML Properties

Individual elements of this mapping can be illustrated to further explain the principles used to create the
mapping. Figure 2 depicts the “mother” relationship that exists between the class Person and the class
Woman. In UML this is represented as a labeled association between the two classes. In DAML the property
“mother” exists independently of the two classes and is not given significance until a restriction is placed



DAML Concept Similar UML Concepts
Ontology Package
Class Class
As Sets (disjoint, union)|Difficult to represent
Hierarchy Class Generalization Relations
Property Aspects of Attributes, Associations and Classes
Hierarchy None for Attributes, limited Generalization for
Associations, Class Generalization Relations
Restriction Constrains Association Ends, including multiplicity
and roles. Implicitly as class containing the attribute
Data Types Data Types
Instances and Values Object Instances and Attribute Values

Table 1. High-Level Mapping of UML and DAML Concepts

UML DAML
class Class
instanceOf type
type of ModelElement type
attribute ObjectProperty or DatatypeProperty
binary association ObjectProperty
generalization subClassOf
< subPropertyOf>> stereotyped dependency between 2 associations subPropertyOf
generalization between stereotyped classes subPropertyOf
note comment
name label
“seeAlso” tagged value on a class and association seeAlso
“isDefinedBy” tagged value on a class and association isDefined By

class containing the attribute

“subClassOf” a property restriction

source class of an association

“subClassOf” a property restriction

attribute type

“toClass” on a property restriction

target class of an association

“toClass” on a property restriction

< equivalentTo> stereotyped dependency equivalentTo
<sameClassAs> stereotyped dependency between two classes sameClassAs
<samePropertyAs>> stereotyped dependency between two associations|samePropertyAs
< Ontology>> stereotyped package Ontology
“versionInfo” tagged value on a package versionInfo
import (dependency stereotype) imports
multiplicity cardinality

multiplicity range Y..Z

Y = minCardinality, Z = maxCardinality

association target with end multiplicity = 0..1 or 1 UniqueProperty
association source with end multiplicity = 0..1 or 1 UnambiguousProperty
<inverseOf>> stereotyped dependency between two associations inverseOf

< TransitiveProperty>> stereotype on an association TransitiveProperty

Table 2. Mapping Between UML and DAML




Fig. 2. DAML Property Restriction

on the source class of the relationship. In Figure 2, this is represented as a restriction for class Person, on
property “mother”, to class Woman.

By applying the proposed DAML to UML mapping, a DAML translation can be generated. Listing 3
represents a section of an ontology that has been constructed from Figure 2

<daml:Class rdf:ID="Person">
<daml:label>Person</daml:label>
<daml:subClass0f>
<daml:Restriction>
<daml:onProperty rdf:resource="#mother"/>
<daml:toClass rdf:resource="#Woman"/>
</daml:Restriction>
</daml:subClass0f>
</daml:Class>
<daml:Class rdf:ID="Woman">
<daml:label>Woman</daml:1label>
</daml:Class>
<daml:Property rdf:ID="mother"/>

Fig. 3. DAML Translation of Figure 2

Another concept of the mapping can be seen in Figure 4, which shows one of the UML representations of
a DAML Sub-Property. In the figure, the property that represents a person as being the “father of” another
person is a refinement of the property of a person being the “parent of” another person.

4.2 Representing DAML Instances

Figure 5 illustrates the concept of an instantiated class in UML. In a similar fashion, this would described
in DAML as an element identified as “Tommy”, with type identified as Person and the value “9” assigned
to the property “age”.

4.3 Representing Facets of Properties

To demonstrate the mapping between UML multiplicity and DAML cardinality, Figure 6 depicts the correla-
tion between the multiplicity of an association end and the corresponding cardinality in DAML. In the figure,
an association end that contains a single value would map to a specific cardinality value for the property
restriction. An association end that contains a range of values would map to the minimum and maximum
cardinality allowed for the corresponding property restriction.



Fig. 4. Example of a Sub-Property

Fig.5. DAML type property

Figure 7 and Figure 8 depict special cases of DAML properties with predefined cardinality restrictions.
The first of these is called an Unambiguous Property and is depicted in Figure 7. An Unambiguous Property
is defined in DAML as a relation that, given a specified target element, will always originate from the same
source element.

Figure 8 represents the UML notation for the DAML concept of a Transitive Property. A Transitive
Property is defined in the terms of three or more elements. To be considered transitive, a property that
holds true for the first and second elements and holds true for the second and third elements must also hold
true for the first and third elements. For example, given that Tom is the ancestor of Jack, and Jack is the
ancestor of Robert, then Tom is also the ancestor of Robert.

5 Incompatibilities Between UML and DAML

While there are many similarities between UML and DAML, there are also many differences. Reconciling
these differences has been one of the major problems of our project. We now discuss the major incompati-
bilities between UML and DAML.

5.1 Containers and Lists

RDF has a number of container notions: Bag, Seq and Alt. The semantics of these notions are not very clear,
and DAML has largely replaced them with the notion of a List. UML does have containers (in OCL), and
it also has ordered associations which implicitly define a list within the context of the association. For a
particular modeling task, one can often use either one (e.g., a design using an explicit list structure could
be redesigned to use an ordered association instead). However, lists and ordered associations have different
interfaces, and it is difficult to map one to the other in an automated fashion.



Fig. 6. DAML Cardinality

Fig. 7. Example of an Unambiguous Property

5.2 Universal Classes

RDFS and DAML have “universal” classes. The Resource class has every object as an instance, and the
Literal has every literal as an instance. DAML adds the Thing class that has every object, including both
objects and literals (and presumably anything else as well). No such universal classes exist in UML. One can
certainly add such classes to a UML model, but it is not compatible with the spirit of UML modeling.

5.3 Constraints

DAML imposes a constraint by specifying that a class is a subclass of a restriction class. The semantics of
each kind of restriction constraint is specified by the DAML axioms. UML can specify constraints using a
variety of graphical mechanisms, and one can also specify constraints using OCL. The graphical constraint
mechanisms (e.g., multiplicity constraints) are specified by OCL, so ultimately all constraints get imposed,
directly or indirectly, in OCL.

5.4 Property

As we have noted in Section 1 above, the DAML notion of property is a first-class modeling element, while
the UML notion of an association is not. Furthermore, a UML binary association always has just one domain
class and one range class, but a DAML property can have many domain classes, although it can only have
one range class.

A UML nonbinary association cannot be directly represented as a single DAML property, and it must be
reified as a DAML class with as many properties as the arity of the UML association. In other words, a UML
nonbinary association must be reified. Of course, binary associations can also be reified. Whether to reify an



Fig. 8. Example of a Transitive Property

association is a design choice. Ontology developers refer to such design choices as ontological commitment.
Reification is a useful design technique, but it has the disadvantage that the design is more complex, and the
design units that make up the reification are no longer explicitly related to one another. In addition, if one
uses reification in an automated mapping from one language to another (e.g., from DAML to UML), then
the resulting mapping is unbounded, as the example at the end of Section 3 illustrates.

Another significant difference between UML and DAML is that the relation between UML classes and
associations is not exactly the same as between DAML classes and properties. In UML, multiplicity con-
straints on associations can affect membership of objects in the classes related through the association; this
is because multiplicity constraints constrain the number of objects that can be instantiated for these classes.
Classes in UML do not directly affect associations. In DAML, constraints on properties are imposed some-
what indirectly by specifying that a class is a subtype of a class called a restriction. Doing this may limit
the scope of the properties being constrained by the restriction class.

Finally, another important difference between UML and DAML is that descriptions of both classes and
properties in DAML can be distributed over various locations. This is not in the spirit of UML.

The differences identified above have their own advantages and disadvantages. The idea of distribution
of descriptions, for instance, goes against the principle of modularization, an accepted principle in software
engineering, but it does help to support reuse. Similarly, the idea of a property being associated with multiple
classes is more flexible and might foster reuse, but it clashes with modularity. Consider, for example, the
notion of a location. This is a property that occurs frequently in models, often several times within the
same model. In UML, such occurrences are different associations, while in DAML, they would all be the
same property.

For instance, the property of location could associate Faculty with University. Each link of this
association would give the University affiliation of a faculty member. In UML it would be modeled as an
association. The same property might also be used for associating a Building with its Address. In UML,
this would be modeled as a second association, whether or not the associations use the same name, because
the associations are in different namespaces.

In RDF and DAML (as well as many other knowledge representation languages), properties are first class.
A property need not have any domain or range specifications at all, but when it does it may have multiple
domains and only one range. Furthermore, properties may have values that are literals as well as objects, so
that properties subsume both the association and the attribute concepts in UML.

On the other hand, UML allows associations that are nonbinary, while properties can only be binary.
There are well-known techniques for dealing with nonbinary relationships, but it is much harder to deal with
the fact that UML associations and attributes cannot be first class.

Although two UML associations may have the same name, they are still different associations because
the names are in different namespaces. If one chooses to map two UML associations having the same name
to the same RDFS property, then this could violate the requirement that an RDFS property have only one



range. If one maps each association to a different RDFS property, then RDFS properties having multiple
domains will not be expressible in UML.

To deal with the problem of first class properties, we recommend that a new type of model element be
added to UML for representing properties. Since RDF properties are unidirectional, it would be incorrect
to view a property as a grouping of associations. The correct interpretation is to define a property to be an
aggregation of associations ends from different associations. This is discussed in more detail in Section 7.

5.5 Cardinality Constraints

UML multiplicity constraints on an association end correspond relatively accurately to the UML cardinality
constraints. The only incompatibility has to do with the fact that properties are first class model elements
and that properties are one-directional. The first class feature of properties means that one can specify a
cardinality constraint for every domain of a property all at once. In UML one must specify this separately
for each association (end) belonging to the property, while in DAML it is only necessary to specify it once.
On the other hand, UML allows one to specify cardinality constraints on all of the ends of an association. In
DAML, one must introduce an inverse property in order to specify a cardinality constraint on the domain
of a property.

5.6 Transitivity

DAML has the capability of imposing constraints on properties. From the point of view of UML, this means
that one can impose a constraint on a number of associations all at once. This is a useful modularization
technique related to current work on aspect-oriented programming. The only constraint of this kind that is
explicitly supported at the moment is transitivity, but other constraints may be added later.

5.7 Subproperties

RDF allows one property to be a subproperty of another. UML has the ability to specify that one association
is a specialization of another, though this construct is rarely used. In our recommendation, Property is a
specialization of Classifier, so that a property can be a specialization of another. Of course, OCL constraints
must be added to ensure that one does not have meaningless specializations, such as properties that are
specializations of associations, and the semantics of property specialization must be specified carefully.

5.8 Namespaces

While it is reasonable to define a mapping from UML to DAML by specifying how each construct is to be
mapped, one must also consider how the constructs are related to one another. In other words, in addition
to the major constructs one must also consider the “glue” that ties them together.

Constructs in DAML are linked together either through the use of URIs or by using the hierarchical
containment relationship of XML. DAML objects need not be explicitly named (i.e., they can be anonymous),
and such objects can be related to other objects using XML containment.

UML uses a very different kind of “glue” to link its objects to each other. Instead of URISs, it uses names
in a large number of namespaces. For example, each class has its own namespace for its attributes and
associations. This is further enriched by the ability to specify private, protected and public scopes. RDF also
has namespaces (from XML), but XML namespaces are a very different notion. RDF lacks any kind of name
scoping mechanism. In addition, one cannot specify navigability constraints for RDF properties. While RDF
properties are unidirectional, this is only a mechanism for distinguishing the roles of objects being related.
It does not limit accessibility.

Any mapping from UML to DAML or the reverse must have a mechanism for ensuring that names are
properly distinguished. However, there are known methods for dealing with this problem, and no new UML
features are needed to deal with this.



UML also uses graphical proximity to specify relationships, and these are the only way that unnamed
objects can be linked with other objects. Graphical relationships are more complex than hierarchical contain-
ment, and one would expect that graphical interfaces would be more general than hierarchical containment.
However, this is not quite true. The XML serialization form of RDF can specify sequence information very
easily while it is awkward to specify a sequential order for graphical objects. Indeed, serializations impose a
sequence ordering on every relationship even when it is irrelevant.

When specifying a mapping from UML to DAML, one should also address the issue of how relationships
between model elements are to be mapped. The most important issue is the mapping of names, but other
issues are also significant.

6 Semantics of Constraints

One overriding distinction between UML and DAML is the semantics of constraints. In UML a constraint is
a requirement that restricts the instantiations that are possible for a given model. In DAML and other logic-
based KR languages, constraints are axioms from which one can perform logical inference. To understand
the distinction, suppose that in a UML class diagram one has Student and Department classes, and one has
an association major that specifies the department in which a student is majoring. Assume that there is a
cardinality constraint on major that constrains a student to major in at most one department. Now suppose
that a particular student is majoring both in Computer Science and Chemistry. In UML this would violate
the cardinality constraint. In DAML, on the other hand, one can conclude that Computer Science and
Chemistry must be the same department.

7 Recommendations

DAML is similar to many other KR languages that are based on the mathematical notion of a graph or
network (consisting of a set of vertices and edges). Conceptual graphs and semantic networks are examples
of commonly used KR languages of this kind. Natural Language Processing (NLP) systems are well suited to
this kind of knowledge representation because an edge from one vertex to another corresponds to a predicate
linking a subject to an object. Parts of speech in general map reasonably well to modeling constructs in
KR systems (see, for example, [1]). In DAML a predicate is represented by a property. However, the DAML
notion of a property is defined independently of any context in which it might be used. Whether properties
should be decontextualized in this manner is a hotly debated philosophical issue.

We do not take any particular stand on whether decontextualized properties are appropriate for modeling
activities. Rather we feel that this decision should be left to the modeler. Furthermore, the knowledge
representation community is a large and growing community, and it makes sense to support their modeling
techniques if it is convenient to do so and it does not break any existing models. We argue here that by adding
a few additional model elements to the UML metamodel one can make UML compatible with knowledge
representation languages.

To close the gap in the expressibility of UML, we propose to extend UML by adding two meta-model
elements called Property and Restriction. The MOF diagram for this extension is shown in Figure 9. As
can be seen from the diagram, Property is an aggregation of a number of association ends. The notion of
Association End does not need to be changed. The notion of Property serves as a means of grouping various
association ends. This capability is not present in the current UML. The fact that Property is a first-class
concept is shown by the fact that Property can exist without being associated with any classes. This is
imposed by setting the multiplicity constraint on the aggregation to 0..*. A property can be constrained
by zero or more Restrictions, as is the case in DAML. The Restriction is a Classifier. It is also related to at
least one class.

It is tempting to deal with the issue of first-class properties by simply reifying them. Classes are first-
class modeling elements, so this appears to solve the problem. For example, instead of attempting to model
location as an association, one could model it as a class Location. However, this has several disadvantages.



Fig. 9. The MOF Specification of the UML Extension

It can result in complex, unnatural ontologies, and it puts the burden on the ontology developer to deal
with this incompatibility issue. Furthermore, if this is used as a mechanism for mapping between DAML and
UML, then the resulting mapping is unbounded, as has been discussed in Section 5.4.

7.1 Property Semantics

A property is a grouping of association ends. Properties “cross-cut” the Association concept. In particular,
no property can have more than one of the association ends of an association. To express this in OCL one uses
allConnections, the set of all Association Ends of an Association, and we introduce al1PropConnections
to be the set of all Property classifier of an Association. If T is the intersection of the allConnections and
allPropConnections sets, then T has cardinality at most 1. More formally:

allConnections: Set(AssociationEnd);

allPropConnections: Set(Property);
self.allConnections->intersection(self.allPropConnections:Set(T)):Set(T);
size (#T)<=1

In addition, one must specify that Property classifier can only be specializations or generalizations of
other Property classifier.

7.2 Restriction Semantics

A restriction is a classifier for objects. The instances of the restriction are the objects that satisfy a condition
on one or more properties associated with the restriction. A restriction is imposed on a class by specifying
that the class is a specialization of the Restriction classifier.



If a Restriction classifier is linked with a Property classifier, and if the Restriction classifier is linked with
Classes (via the toClass meta-Association), then the instances of the Restriction classifier can only link
with objects that are in one of the specified classes.

As with the Property classifiers, the Restriction classifiers can only be generalizations and specializations
of other Restriction classifiers.

8 Conclusion

In this paper we have reported on our work in progress on a UML as an ontology development environment.
We have identified similarities and differences between UML and DAML, and we have discussed how they can
be mapped to each other. In the “similarities” discussion we showed how UML concepts can be mapped to
DAML. In the “incompatibilities” discussion we identified differences between the two representations. In the
“mapping” discussion, we made an attempt to give rules for translating UML concepts to DAML concepts. As
a result of our analysis, we came to the conclusion that some of the concepts are significantly incompatible. In
particular, the concept of DAML Property, although somewhat similar to the UML Association concept,
cannot be mapped easily. We believe that this is the main obstacle to using UML (and UML tools) for
DAML-based ontology development. We believe this obstacle could be reconciled by a modest extension to
the UML. We proposed the main idea of such an extension in this paper. We also explained the advantages
and disadvantages of having the concept of Association and Property. If the extension as proposed in this
paper is accepted, then the two concepts can be mapped consistently. This might lead to the acceptance
of UML by the knowledge representation community as the preferred graphical notation for KR languages,
such as DAML, that are based on graphs.
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